Affiliation:
1. Department of Internal Medicine and Liver Research Institute, Seoul National University College of Medicine, Seoul;
2. Department of Internal Medicine, Seoul National University Bundang Hospital, Seongnam, Gyeonggi;
3. Life Science R&D Center, SK Chemicals, Suwon, Gyeonggi; and
4. Department of Pathology, Seoul National University Bundang Hospital, Seongnam, Gyeonggi, Korea
Abstract
Aging changes in the stomach lead to a decreased capacity for tissue repair in response to gastric acid. The aim of this study was to determine the mechanism associated with the increased susceptibility to injury of aging mucosa including reactive oxygen species ( 5 ), apoptosis, angiogenesis, and sensory neuron activity. Fischer 344 rats at four different ages (6, 31, 74 wk, and 2 yr of age) were studied. The connective tissue indicators [salt-soluble collagen and sulfated glycosaminoglycan (sGAG)], lipid hydroperoxide (LPO), myeloperoxidase (MPO), and hexosamine were assessed. We also evaluated the expression of early growth response-1 (Egr-1), phosphatase and tension homologue deleted on chromosome 10 (PTEN), caspase-9 (index of apoptosis), VEGF (index of angiogenesis), calcitonin gene-related peptide (CGRP, index of sensory neurons), and neuronal nitric oxide synthase (nNOS). The histological connective tissue area in the lower part of rat gastric mucosa increased with aging, with increase of salt-soluble collagen and sGAG. LPO and MPO in old rats were significantly greater than in the young rats, whereas hexosamine was significantly reduced. The old gastric mucosa had increased expression of Egr-1, PTEN, and caspase-9, whereas the VEGF, CGRP, and nNOS expression were significantly reduced. These results indicate that the lower part of rat gastric mucosa was found to be replaced by connective tissue with accumulation of oxidative products with aging. In addition, impairment of apoptosis, angiogenesis, and sensory neuron activity via the activation of Egr-1 and PTEN might increase the susceptibility of gastric mucosa to injury during aging.
Publisher
American Physiological Society
Subject
Physiology (medical),Gastroenterology,Hepatology,Physiology
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献