Characterization of apical and basal thiol-disulfide redox regulation in human colonic epithelial cells

Author:

Mannery Yanci O.1,Ziegler Thomas R.2,Hao Li2,Shyntum Yvonne1,Jones Dean P.3

Affiliation:

1. Graduate Program in Molecular and Systems Pharmacology, Department of Medicine,

2. Division of Endocrinology, Metabolism and Lipids, and

3. Division of Pulmonary, Allergy and Critical Care Medicine, Emory University, Atlanta, Georgia

Abstract

Control of extracellular thiol-disulfide redox potential (Eh) is necessary to protect cell surface proteins from external oxidative and reductive stresses. Previous studies show that human colonic epithelial Caco-2 cells, which grow in cell culture with the apical surface exposed to the medium, regulate extracellular cysteine/cystine Ehto physiological values (approximately −80 mV) observed in vivo. The present study tested whether extracellular Ehregulation occurs on the basal surface of Caco-2 cells and investigated relevant mechanisms. Experiments were performed with confluent, differentiated cells grown on a permeable membrane surface. Cells were exposed to an oxidizing potential (0 mV) using a fixed cysteine-to-cystine ratio, and culture medium was sampled over time for change in Eh. Regulation of extracellular thiol-disulfide Ehon the basal domain was faster, and the extent of change at 24 h was greater than on the apical surface. Mechanistic studies showed that redox regulation on the basal surface was partially sodium dependent and inhibited by extracellular lysine, a competitive inhibitor of cystine transport by the y+L system and by quisqualic acid, an inhibitor of the xcsystem. Studies using the thiol-reactive alkylating agent 4-acetamido-4′-maleimidylstilbene-2,2′-disulfonic acid and the glutathione synthesis inhibitor buthionine sulfoximine showed that extracellular redox regulation was not attributable to plasma membrane cysteine/cystine interconversion or intracellular glutathione, respectively. Thus the data show that redox regulation occurs at different rates on the apical and basal surfaces of the polarized Caco-2 epithelial cell line and that the y+L and xcsystems function in extracellular cysteine/cystine redox regulation on the basal surface.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3