A cholesterol-free, high-fat diet suppresses gene expression of cholesterol transporters in murine small intestine

Author:

de Vogel-van den Bosch Heleen M.,de Wit Nicole J. W.,Hooiveld Guido J. E. J.,Vermeulen Hanneke,van der Veen Jelske N.,Houten Sander M.,Kuipers Folkert,Müller Michael,van der Meer Roelof

Abstract

Transporters present in the epithelium of the small intestine determine the efficiency by which dietary and biliary cholesterol are taken up into the body and thus control whole-body cholesterol balance. Niemann-Pick C1 Like Protein 1 (Npc1l1) transports cholesterol into the enterocyte, whereas ATP-binding cassette transporters Abca1 and Abcg5/Abcg8 are presumed to be involved in cholesterol efflux from the enterocyte toward plasma HDL and back into the intestinal lumen, respectively. Abca1, Abcg5, and Abcg8 are well-established liver X receptor (LXR) target genes. We examined the effects of a high-fat diet on expression and function of cholesterol transporters in the small intestine in mice. Npc1l1, Abca1, Abcg5, and Abcg8 were all downregulated after 2, 4, and 8 wk on a cholesterol-free, high-fat diet. The high-fat diet did not affect biliary cholesterol secretion but diminished fractional cholesterol absorption from 61 to 42% ( P < 0.05). In an acute experiment in which triacylglycerols of unsaturated fatty acids were given by gavage, we found that this downregulation occurs within a 6-h time frame. Studies in LXRα-null mice, confirmed by in vitro data, showed that fatty acid-induced downregulation of cholesterol transporters is LXRα independent and associated with a posttranslational increase in 3-hydroxy-3-methylglutaryl-coenzyme A reductase activity that reflects induction of cholesterol biosynthesis as well as with a doubling of neutral fecal sterol loss. This study highlights the induction of adaptive changes in small intestinal cholesterol metabolism during exposure to dietary fat.

Publisher

American Physiological Society

Subject

Physiology (medical),Gastroenterology,Hepatology,Physiology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3