Dynamic Spatiotemporal Synaptic Integration in Cortical Neurons: Neuronal Gain, Revisited

Author:

Azouz Rony

Abstract

Gain modulation is a ubiquitous phenomenon in cortical neurons, providing flexibility to operate under changing conditions. The prevailing view is that this modulation reflects a change in the relationship between mean input and output firing rate brought about by variation in neuronal membrane characteristics. An alternative mechanism is proposed for neuronal gain modulation that takes into account the capability of cortical neurons to process spatiotemporal synaptic correlations. Through the use of numerical simulations, it is shown that voltage-gated and leak conductances, membrane potential, noise, and input firing rate modify the sensitivity of cortical neurons to the degree of temporal correlation between their synaptic inputs. These changes are expressed in a change of the temporal window for synaptic integration and the range of input correlation over which response probability is graded. The study also demonstrates that temporal integration depends on the distance between the inputs and that this interplay of space and time is modulated by voltage-gated and leak conductances. Thus, gain modulation may reflect a change in the relationship between spatiotemporal synaptic correlations and output firing probability. It is further proposed that by acting synergistically with the network, dynamic spatiotemporal synaptic integration in cortical neurons may serve a functional role in the formation of dynamic cell assemblies.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 34 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3