D1 and D2 antagonists reverse the effects of appetite suppressants on weight loss, food intake, locomotion, and rebalance spiking inhibition in the rat NAc shell

Author:

Kalyanasundar B.1,Perez Claudia I.1,Luna Alvaro12,Solorio Jessica1,Moreno Mario G.1,Elias David2,Simon Sidney A.3,Gutierrez Ranier1

Affiliation:

1. Laboratory of Neurobiology of Appetite, Department of Pharmacology, Centro de Investigación y de Estudios Avanzados (CINVESTAV), Mexico City, Mexico;

2. Department of Bioelectronics, CINVESTAV, Mexico City, Mexico;

3. Department of Neurobiology, Duke University Medical Center, Durham, North Carolina

Abstract

Obesity is a worldwide health problem that has reached epidemic proportions. To ameliorate this problem, one approach is the use of appetite suppressants. These compounds are frequently amphetamine congeners such as diethylpropion (DEP), phentermine (PHEN), and bupropion (BUP), whose effects are mediated through serotonin, norepinephrine, and dopaminergic pathways. The nucleus accumbens (NAc) shell receives dopaminergic inputs and is involved in feeding and motor activity. However, little is known about how appetite suppressants modulate its activity. Therefore, we characterized behavioral and neuronal NAc shell responses to short-term treatments of DEP, PHEN, and BUP. These compounds caused a transient decrease in weight and food intake while increasing locomotion, stereotypy, and insomnia. They evoked a large inhibitory imbalance in NAc shell spiking activity that correlated with the onset of locomotion and stereotypy. Analysis of the local field potentials (LFPs) showed that all three drugs modulated beta, theta, and delta oscillations. These oscillations do not reflect an aversive-malaise brain state, as ascertained from taste aversion experiments, but tracked both the initial decrease in weight and food intake and the subsequent tolerance to these drugs. Importantly, the appetite suppressant-induced weight loss and locomotion were markedly reduced by intragastric (and intra-NAc shell) infusions of dopamine antagonists SCH-23390 (D1 receptor) or raclopride (D2 receptor). Furthermore, both antagonists attenuated appetite suppressant-induced LFP oscillations and partially restored the imbalance in NAc shell activity. These data reveal that appetite suppressant-induced behavioral and neuronal activity recorded in the NAc shell depend, to various extents, on dopaminergic activation and thus point to an important role for D1/D2-like receptors (in the NAc shell) in the mechanism of action for these anorexic compounds.

Funder

Consejo Nacional de Ciencia y Tecnología (National Council of Science and Technology, Mexico)

ICYTDF

Productos Medix

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3