Effect of temperature on metabolism of glucose in vitro

Author:

Fuhrman Geraldine J.1,Fuhrman Frederick A.1

Affiliation:

1. Max C. Fleischmann Laboratories of the Medical Sciences, School of Medicine, Stanford University, Palo Alto, California

Abstract

We recently showed that hypothermic rats fail to remove glucose from the extracellular phase. This information led to these studies on the uptake of glucose at low temperatures by rat diaphragm and red blood cells and its phosphorylation by hexokinase. It is shown here that rat diaphragm and red blood cells utilize glucose at all temperatures from 1 to 38 C. Both processes follow the Arrhenius equation and give µ equal to 18,000 and 21,900, respectively. The velocities of the phosphorylation of glucose by hexokinase from yeast and from rat muscle both yield straight lines on an Arrhenius plot with µ equal to 13,300 and 14,900. The temperature coefficient of the velocity of action of hexokinase is consistent with the effects of temperature on other enzymes. Penetration of glucose into cells at low temperatures apparently equals or exceeds the rate of phosphorylation. Thus the abnormal metabolism of glucose in hypothermia is not caused by failure of glucose to penetrate cells, and there is no unusual sensitivity of hexokinase to changes in temperature.

Publisher

American Physiological Society

Subject

Physiology (medical)

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3