Effect of varying coronary perfusion on ventricular function in isolated dog hearts

Author:

Buckley N. M.1,Porter E. P.1,Jedeikin L. A.1

Affiliation:

1. Department of Physiology, Albert Einstein College of Medicine, New York City

Abstract

The effects of coronary perfusion on ventricular function have been studied in isolated ventricle preparations working under different conditions. Coronary flow, oxygen consumption, ventricular stroke work, rate of ventricular pressure change during isovolumetric contraction (dPC), and diastolic ventricular pressure (DVPm) and pressure/inflow ratio were determined. Maintenance of coronary flow and oxygen consumption in 5 experiments did not prevent irreversible changes in DVPm, stroke work, and dPC when the right ventricle was acutely overloaded. These ventricles did not accumulate water. Decreasing coronary perfusion pressure at constant arterial oxygen content in 11 experiments led to inconsistent changes in DVPm, stroke work and dPC. Decreasing arterial oxygen content at constant coronary perfusion pressure in 10 experiments led to increased DVPm but inconsistent changes in stroke work and dPC. There was an inverse relationship between DVPm and oxygen consumption in the variable perfusion experiments, but not in the overloading experiments. Ventricular function did not change significantly with time in 6 experiments in which the conditions of workload and coronary perfusion were kept constant. It was concluded that irreversible changes in performance of acutely overloaded ventricles could be independent of coronary flow, myocardial water content, or duration of experiment.

Publisher

American Physiological Society

Subject

Physiology (medical)

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3