Steps in p-aminohippurate transport by kidney slices

Author:

Foulkes Ernest C.1,Miller Benjamin F.1

Affiliation:

1. May Institute for Medical Research, Cincinnati Jewish Hospital and Medical Center, and Departments of Physiology and Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio

Abstract

The existence of two intracellular fractions of PAH was demonstrated in renal cortical slices of the rabbit on incubation with C14-labeled PAH. One of these fractions is rapidly diffusible and rapidly equilibrates with extracellular PAH. The other fraction, in contrast, diffuses and equilibrates slowly; it is responsible for the high slice to medium concentration ratio of PAH. On the basis of these results a model of the PAH transport system in slices is proposed. This consists of step I, the diffusion of PAH from the medium into the extracellular space in the tissue; there follows step II, a facilitated diffusion step at the peritubular cell membrane; within the cell step III builds up a high tissue concentration of PAH; finally step IV transfers PAH across the luminal border of the cell into the tubular lumen from which it may diffuse back into the medium. Experiments were designed in which each of these steps could be measured individually and their rate constants determined. Alteration of the value of these rate constants by specific drugs localizes the action of such compounds at the peritubular cell membrane (Benemid, 9-alphafluorohydrocortisone) or at the level of both steps II and III in the case of DNP, octanoate and Diodrast. An explanation is also offered for the effect of cold on PAH influx and efflux. It can be calculated that the contribution of step IV to the turnover of PAH in slices is not quantitatively significant.

Publisher

American Physiological Society

Subject

Physiology (medical)

Cited by 83 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3