Frequency-force relationships of mammalian ventricular muscle in vivo and in vitro

Author:

Kahn ML,Kavaler F,Fisher VJ

Abstract

The change in contractility with increasing heart rate was studied in the left ventricle of dogs and in isolated trabeculae carneae of cats. For some of the studies in situ a transient isovolumic state was created by aortic occlusion. At physiological temperatures the frequency-force relationship is flatter than at room temperature and at the same temperature it is flatter in vivo than in vitro. The frequency-(dF/dt)max relationship is steeper than the frequency-force relationship at both temperatures in vivo and in vitro. The frequency-(dF/dt)max relationship is steeper in vitro than it is in situ, although the discrepancy is less marked than in the case of the frequency-force relationship. It is concluded that "staircase" plays less of a physiological role in adjustment of contractile state in situ than might be inferred from studies of isolated tissue.

Publisher

American Physiological Society

Subject

Physiology (medical)

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3