Renal hydrogen ion secretion after release of unilateral ureteral obstruction

Author:

Thirakomen K,Kozlov N,Arruda JA,Kurtzman NA

Abstract

The effect of 24 h of unilateral ureteral obstruction on HCO3 reabsroption and urinary acidification was studied in dogs. The postobstructed kidney (EK) had a significantly lower glomerular filtration rate and renal plasma flow than the contralateral kidney (CK). Urinary pH prior to HCO3 loading was significantly higher in the EK as was maximal HCO3 reabsorption. Saline loading depressed HCO3 reabsorption to the same degree in both kidneys. Urinary PCO2, during HCO3 loading, and during phosphate infusion, was significantly lower in the EK than the CK. Fractional Na excretion was significantly higher in the EK than the CK after deoxycorticosterone acetate administration. Na2SO4 administration enhanced acid excretion only in the CK. K excretion was significantly lower in the EK than the CK both during HCO3 loading and Na2SO4 administration. There was redistribution of cortical blood flow from the outer cortex toward the inner cortex in the EK as compared to the CK. There was no difference in plasma renin activity from both renal veins. These data demonstrate enhanced proximal H+ secretion (which is abolished by volume expansion) and impaired distal H+ secretion by the postobstructed kidney. The distal defect is likely an effect of a generalized disorder of distal transport in that both K secretion and steroid-responsive Na reabsorption were impaired in the postobstructed kidney.

Publisher

American Physiological Society

Subject

Physiology (medical)

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Noninvasive assessment of renal dynamics and pH in a unilateral ureter obstruction model using DCE MR‐CEST urography;Magnetic Resonance in Medicine;2022-09-11

2. Acute Kidney Injury Caused by Obstructive Nephropathy;International Journal of Nephrology;2020-11-29

3. Hydronephrosis;Blandy's Urology;2019-02-27

4. Hyperkalemic Forms of Renal Tubular Acidosis: Clinical and Pathophysiological Aspects;Advances in Chronic Kidney Disease;2018-07

5. Hypokalemic Distal Renal Tubular Acidosis;Advances in Chronic Kidney Disease;2018-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3