Ion transport and structure of urinary bladder epithelium of Amphiuma

Author:

Mullen TL,Kashgarian M,Biemesderfer D,Giebisch GH,Biber TU

Abstract

The urinary bladder of Amphiuma exhibits stable transport properties and an electrical potential difference in vitro. The lumen is significantly negative to the serosa and under short-circuited conditions flux rations for Na and Cl of 5.92 +/- 0.42 and 1.81 +/- 0.20, respectively, were observed. The close agreement between the short-circuit current and net Na flux suggests that most, if not all, of the current is carried by Na. Both ouabain and amiloride decreased the short-circuit current and the mucosal-to-serosal (M leads to S) flux of Na. Furosemide caused a transient increase in the M leads to S flux of Na and Cl but ADH was without effect. In bladders that had high transmural resistance, a net movement of K in the M leads to S direction under short-circuited conditions with flux ratios of up to 2 could be observed. The epithelium of the Amphiuma bladder consists of three cell types: granular cells, basal cells, and mitochondria-rich cells. No goblet cells are present. The mitochondria-rich cells comprise less than 5% of the population of the surface epithelium in Amphiuma in contrast to other amphibian bladders, where it accounts for up to 25% of the population.

Publisher

American Physiological Society

Subject

Physiology (medical)

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Osmoregulation and Excretion;Comprehensive Physiology;2014-03-19

2. Osmotic and Ion Regulation in Amphibians;Osmotic and Ionic Regulation;2008-11-18

3. Central Neuroendocrine Regulation of Brain Water Permeability;Ciba Foundation Symposium 56 - Cerebral Vascular Smooth Muscle and Its Control;2008-05-30

4. Energetics of osmoregulation in fresh water vertebrates;Journal of Experimental Zoology;1995-03-01

5. The role of the amphibian kidney and bladder in the regulation of acid–base relevant ions;Canadian Journal of Zoology;1989-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3