Electrical transmission of slow waves from longitudinal to circular intestinal muscle

Author:

Bortoff Alex1

Affiliation:

1. Department of Physiology, State University of New York, Upstate Medical Center, Syracuse, New York

Abstract

Circular muscle from cat intestine exhibits spontaneous rhythmical contractions only when it is attached to longitudinal muscle. Under these conditions electrical slow waves can be recorded from circular muscle, but they disappear following complete removal of the longitudinal layer. If a small patch of longitudinal muscle remains, slow waves can be recorded from adjacent circular muscle. Those recorded lateral to the longitudinal layer are synchronized with slow waves recorded directly from this layer. Their amplitude decreases exponentially with distance, approaching zero at about 12 mm from the lateral edges and about 3 mm from the oral or aboral edge of the longitudinal layer. Slow waves can also be recorded across the entire intestinal wall or across a longitudinal-circular muscle preparation. With this method of recording, the amplitude of the slow waves decreases as the thickness of the circular layer is reduced by stripping away its innermost layers. The amplitude is not increased by replacing these layers. These results indicate that slow waves may be transmitted electrotonically from longitudinal to circular muscle, implying the existence of electrical continuity between the two muscle layers. The transmission of slow waves can account for the coordinated spontaneous rhythmicity exhibited by circular muscle under normal conditions, i.e., when attached to the longitudinal layer.

Publisher

American Physiological Society

Subject

Physiology (medical)

Cited by 79 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Spontaneous Electrical Activity and Rhythmicity in Gastrointestinal Smooth Muscles;Advances in Experimental Medicine and Biology;2019

2. Gastrointestinal Motor Function;Gastrointestinal Physiology;2018

3. Medical management of large colonic impactions;Equine Veterinary Education;2015-12-31

4. Effects of gap junction inhibition on contraction waves in the murine small intestine in relation to coupled oscillator theory;American Journal of Physiology-Gastrointestinal and Liver Physiology;2015-02-15

5. Changes in neuromuscular transmission in the W/Wv mouse internal anal sphincter;Neurogastroenterology & Motility;2011-11-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3