Pharmacologic properties of antihistamines in relation to vascular reactivity

Author:

Altura Burton M.1,Zweifach Benjamin W.1

Affiliation:

1. Department of Pathology, New York University School of Medicine, New York City

Abstract

Experiments were designed to gain further insight into the vasoconstrictor action of antihistamines and to assess further the validity of using antihistamine constrictor action to implicate the presence of "intrinsic" histamine in the terminal vascular bed of normal animals. Experiments with adrenergic blockers eliminate endogenous epinephrine as the sole mechanism responsible for the observed vasoconstriction with antihistamines. Furthermore, experiments with antiserotonin compounds indicate that the constriction cannot be attributed to endogenous 5-HT. In addition, experiments with a cholinergic blocking agent as well as with a local anesthetic eliminate cholinergic or local anesthetic mechanisms as being responsible for the observed antihistamine constriction. The local action of antihistamines likewise clearly rules out a central nervous system pathway which might operate in animals given antihistamines systemically. Experiments with bilateral adrenalectomized animals reveal heightened antihistamine constrictor action which is greatly exacerbated when these animals are given Dibenzyline. These findings are discussed in relation to recent work with antihistamines on ion transport. The present study questions the use of antihistamine constrictor action, to validate the presence and contribution of intrinsic histamine in microcirculatory regulation of normal animals.

Publisher

American Physiological Society

Subject

Physiology (medical)

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3