Metabolism of C14-labeled substrates by rabbit kidney cortex and medulla

Author:

Lee James B.1,Vance Vernon K.1,Cahill George F.1

Affiliation:

1. Department of Medicine, Harvard Medical School, and Peter Bent Brigham Hospital, Boston, Massachusetts

Abstract

Slices of rabbit kidney cortex and medulla were incubated for 90 min at 38 C in Krebs-Ringer bicarbonate buffer containing C14 labeled substrate. In addition to substrate disappearance and concentrations of glycogen and fatty acids, measurements were made of the amount of radioactive substrate incorporated into CO2, glycogen, and fatty acids per gram of wet tissue. Glucose, fructose, mannose, glycerol, pyruvate, and palmitate were oxidized to a significantly greater extent by cortex than medulla. The concentration of glycogen in kidney medulla was twice that of cortex and was maintained at initial concentrations only in the presence of glucose, which showed a significantly greater incorporation into medullary glycogen than did the other substrates. Under pure anaerobic conditions simulating those in vivo, the present study suggests that the metabolism of medulla is almost exclusively glucose-dependent anaerobic glycolysis. On the other hand, the cortex is capable of utilizing a variety of substrates for a high rate of aerobic metabolism.

Publisher

American Physiological Society

Subject

Physiology (medical)

Cited by 204 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3