Continuous light or darkness and circadian periodic mitosis and metabolism in C and D8 mice

Author:

Halberg Franz1,Barnum Cyrus P.1

Affiliation:

1. Division of Cancer Biology, Department of Pathology and Department of Physiological Chemistry, University of Minnesota Medical School; and Cambridge State School and Hospital, Cambridge, Minnesota

Abstract

In immature C mice exposed first to alternating 12 hr of light and 12 hr of darkness (LD), and maintained thereafter in constant darkness for several days, the circadian rhythms in hepatic and pinnal mitosis are demonstrable by spot checks made at the approximate times of LD-synchronized peak and trough. Spot checks at same times in mice of same stock and age, kept for several days in constant light, reveal the cell division rhythm of liver parenchyma, but not that of pinnal epidermis. In immature D8 mice kept for several days in constant darkness, rhythms in hepatic mitosis, phospholipid, ribonucleic and deoxyribonucleic acid metabolism persist, while cell division rhythm in ear pinna of same animals is not detectable with the particular spot check used. In mice of same stock and age, on the 4th day in constant light, a significant rhythm persists in the relative specific activity of the hepatic phospholipid; timing of this metabolic cellular rhythm is drastically desynchronized from the reference standard of a 24-hr clock. Data reveal persistence of some mitotic and metabolic circadian rhythms under conditions studied, with phase drifts or phase shifts of these rhythms occurring both in relation to the 24-hr clock and among the rhythms themselves. These changes in external and internal timing of a circadian system are more extensive in constant light than in constant darkness.

Publisher

American Physiological Society

Subject

Physiology (medical)

Cited by 39 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3