Author:
Khuri RN,Strieder WN,Giebisch G
Abstract
Potassium transport was studied across proximal and distal tubular epithelium in rats on a normal, low- and high-potassium intake during progressive loading with isotonic saline (150 mM) or a moderately hypersomotic urea (200 mM) sodium chloride (100 mM) solution. Free-flow micropuncture and recollection techniques were used during the development of diruesis and tubular fluid (TF) analyzed for inulin-14C, potassium (K) and sodium (Na). Tubular puncture sites were localized by neoprene filling and microdissection. During the large increase in tubular flow rates (10 times): 1) fractional potassium reabsorption fell along the proximal tubule, 2) TFk along the distal tubule remained constant and independent of flow rate in control and high-k rats; thus, net potassium secretion increased in proportion to and was limited by flow rate. 3) In low-K rats TF k fell; with increasing flow rates distal K secretion was not effectively stimulated. 4) Distal tubular sodium reabsorption increased in all animals with flow rate, but tubular Na-K exchange ratios varied greatly. It is suggested that whenever sodium delivery stimulates distal tubular potassium secretion it does so by 1) increasing volume distal tubular potasssium secretion and by 2) augmenting the transepithelial electrical potential difference (lumen negative).
Publisher
American Physiological Society
Cited by
207 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献