Abstract
Sneezes were induced in anestized cats by repetitive stimulation of the ethmoidal nerve. Activity of bulbar respiratory neurons during sneezing was recorded extracellularly through tungsten microelectrodes. Most expiratory neurons could be locked onto the stimulus pulses so that they responded either throughout inspiration as well as expiration or so that they began responding at some time during inspiration. As inspiration approached termination, multiple spiking occurred, finally to result in high-frequency bursts which just preceded active expiration. A fraction of expiratory neurons were activated only in bursts. Latent expiratory neurons were recruited in sneezing. Inspiratory neurons near nucleus ambiguus and most of those near fasciculus solitarius displayed similar response patterns consisting of silent periods followed by delayed smooth activations. Temporal characteristics of the silent periods, "inhibitory gaps," suggested that they resulted from inhibition whose source was the expiratory neurons which were driven throughout inspriation. Some inspiratory neurons in the area of fasciculus solitarius failed to exhibit inhibitory gaps.
Publisher
American Physiological Society
Cited by
62 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献