Sodium, chloride, and bicarbonate movement from plasma to cerebrospinal fluid in cats

Author:

Vogh BP,Maren TH

Abstract

Rate constants have been determined for the entry of 22Na+, 36Cl minus, and H14CO3- into CSF from plasma in cats during changes in Pco2 with and without inhibition of carbonic anhydrase. The application of these rate constants to movement of unlabeled electrolytes suggests that Na+ and Cl minus enter CSF by a one-way flux into newly formed fluid, but that entering HCO3-is involved both in net accumulation in new fluid and in rapid exchange with existing HCO3-. The entering HCO3-ions are not transferred from plasma but are formed in secretory cells from dissolved CO2. The exchange component of HCO3-entry is Pco2-dependent; entry of Na+ and Cl minus is not; hence net rate of HCO3-formation estimated by difference between Na+ and Cl minus is not Pco2 dependent. The net rate of HCO3-formation lies within the availability of CO2 from blood flow to choroid plexus but is not necessarily limited to this tissue. When carbonic anhydrase is inhibited, the net rate of formation of HCO3-is close to the calculated uncatalyzed rate expected for choroid plexus. The entry of all three ions is reduced by carbonic anhydrase inhibition, but the enzyme does not seem to provide the primary signal for alteration of CSF acid-base status. Regulation of CSF pH appears to be achieved through changes in HCO3-concentration that occur subsequent to the secretion of HCO3--rich new fluid.

Publisher

American Physiological Society

Subject

Physiology (medical)

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3