Limbic Network Interactions Leading to Hyperexcitability in a Model of Temporal Lobe Epilepsy

Author:

D'Antuono Margherita12,Benini Ruba1,Biagini Giuseppe13,D'Arcangelo Giovanna4,Barbarosie Michaela1,Tancredi Virginia4,Avoli Massimo12

Affiliation:

1. Montreal Neurological Institute and Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec H3A 2B4, Canada;

2. Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, 86077 Pozzilli (Isernia);

3. Dipartimento di Scienze Biomediche, Università degli Studi di Modena e Reggio Emilia, 41100 Modena; and

4. Dipartimento di Neuroscienze, Università degli Studi di Roma ‘Tor Vergata’, 00173 Rome, Italy

Abstract

In mouse brain slices that contain reciprocally connected hippocampus and entorhinal cortex (EC) networks, CA3 outputs control the EC propensity to generate experimentally induced ictal-like discharges resembling electrographic seizures. Neuronal damage in limbic areas, such as CA3 and dentate hilus, occurs in patients with temporal lobe epilepsy and in animal models (e.g., pilocarpine- or kainate-treated rodents) mimicking this epileptic disorder. Hence, hippocampal damage in epileptic mice may lead to decreased CA3 output function that in turn would allow EC networks to generate ictal-like events. Here we tested this hypothesis and found that CA3-driven interictal discharges induced by 4-aminopyridine (4AP, 50 μM) in hippocampus-EC slices from mice injected with pilocarpine 13–22 days earlier have a lower frequency than in age-matched control slices. Moreover, EC-driven ictal-like discharges in pilocarpine-treated slices occur throughout the experiment (≤6 h) and spread to the CA1/subicular area via the temporoammonic path; in contrast, they disappear in control slices within 2 h of 4AP application and propagate via the trisynaptic hippocampal circuit. Thus, different network interactions within the hippocampus-EC loop characterize control and pilocarpine-treated slices maintained in vitro. We propose that these functional changes, which are presumably caused by seizure-induced cell damage, lead to seizures in vivo. This process is facilitated by a decreased control of EC excitability by hippocampal outputs and possibly sustained by the reverberant activity between EC and CA1/subiculum networks that are excited via the temporoammonic path.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3