Comparison of Spatial Summation Properties of Neurons in Macaque V1 and V2

Author:

Shushruth S.1,Ichida Jennifer M.1,Levitt Jonathan B.2,Angelucci Alessandra1

Affiliation:

1. Department of Ophthalmology and Visual Science, Moran Eye Center, University of Utah, Salt Lake City, Utah; and

2. Department of Biology, City College of New York, New York, New York

Abstract

In visual cortex, responses to stimulation of the receptive field (RF) are modulated by simultaneous stimulation of the RF surround. The mechanisms for surround modulation remain unidentified. We previously proposed that in the primary visual cortex (V1), near surround modulation is mediated by geniculocortical and horizontal connections and far surround modulation by interareal feedback connections. To understand spatial integration in the secondary visual cortex (V2) and its underlying circuitry, we have characterized spatial summation in different V2 layers and stripe compartments and compared it to that in V1. We used grating stimuli in circular and annular apertures of different sizes to estimate the extent and sensitivity of RF and surround components in V1 and V2. V2 RFs and surrounds were twice as large as those in V1. As in V1, V2 RFs doubled in size when measured at low contrast. In both V1 and V2, surrounds were about fivefold the size of the RF and the far surround could exceed 12.5° in radius, averaging 5.5° in V1 and 9.2° in V2. The strength of surround suppression was similar in both areas. Thus although differing in spatial scale, the interactions among RF components are similar in V1 and V2, suggesting similar underlying mechanisms. As in V1, the extent of V2 horizontal connections matches that of the RF center, but is much smaller than the largest far surrounds, which likely derive from interareal feedback. In V2, we found no laminar or stripe differences in size and magnitude of surround suppression, suggesting conservation across stripes of the basic circuit for surround modulation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3