Vestibular contribution to balance control in the medial gastrocnemius and soleus

Author:

Dakin Christopher J.12,Héroux Martin E.13,Luu Billy L.13,Inglis John Timothy145,Blouin Jean-Sébastien146

Affiliation:

1. School of Kinesiology, University of British Columbia, Vancouver, Canada;

2. Institute of Neurology, University College London, London, United Kingdom;

3. Neuroscience Research Australia, Sydney, Australia;

4. David Mowafaghian Center for Brain Health, University of British Columbia, Vancouver, Canada;

5. International Collaboration for Repair Discoveries, University of British Columbia, Vancouver, Canada; and

6. Institute for Computing Information and Cognitive Systems, University of British Columbia, Vancouver, Canada

Abstract

The soleus (Sol) and medial gastrocnemius (mGas) muscles have different patterns of activity during standing balance and may have distinct functional roles. Using surface electromyography we previously observed larger responses to galvanic vestibular stimulation (GVS) in the mGas compared with the Sol muscle. However, it is unclear whether this difference is an artifact that reflects limitations associated with surface electromyography recordings or whether a compensatory balance response to a vestibular error signal activates the mGas to a greater extent than the Sol. In the present study, we compared the effect of GVS on the discharge behavior of 9 Sol and 21 mGas motor units from freely standing subjects. In both Sol and mGas motor units, vestibular stimulation induced biphasic responses in measures of discharge timing [11 ± 5.0 (mGas) and 5.6 ± 3.8 (Sol) counts relative to the sham (mean ± SD)], and frequency [0.86 ± 0.6 Hz (mGas), 0.34 ± 0.2 Hz (Sol) change relative to the sham]. Peak-to-trough response amplitudes were significantly larger in the mGas (62% in the probability-based measure and 160% in the frequency-based measure) compared with the Sol (multiple P < 0.05). Our results provide direct evidence that vestibular signals have a larger influence on the discharge activity of motor units in the mGas compared with the Sol. More tentatively, these results indicate the mGas plays a greater role in vestibular-driven balance corrections during standing balance.

Funder

Gouvernement du Canada | Natural Sciences and Engineering Research Council of Canada (Conseil de Recherches en Sciences Naturelles et en Génie du Canada)

Gouvernement du Canada | Canadian Institutes of Health Research (Instituts de recherche en santé du Canada)

Michael Smith Foundation for Health Research (MSFHR)

Canadian Chiropractic Research Foundation

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3