Modeling Neuromuscular Modulation inAplysia.III. Interaction of Central Motor Commands and Peripheral Modulatory State for Optimal Behavior

Author:

Brezina Vladimir,Horn Charles C.,Weiss Klaudiusz R.

Abstract

Recent work in computational neuroethology has emphasized that “the brain has a body”: successful adaptive behavior is not simply commanded by the nervous system, but emerges from interactions of nervous system, body, and environment. Here we continue our study of these issues in the accessory radula closer (ARC) neuromuscular system of Aplysia. The ARC muscle participates in the animal's feeding behaviors, a set of cyclical, rhythmic behaviors driven by a central pattern generator (CPG). Patterned firing of the ARC muscle's two motor neurons, B15 and B16, releases not only ACh to elicit the muscle's contractions but also peptide neuromodulators that then shape the contractions through a complex network of actions on the muscle. These actions are dynamically complex: some are fast, but some are slow, so that they are temporally uncoupled from the motor neuron firing pattern in the current cycle. Under these circumstances, how can the nervous system, through just the narrow channel of the firing patterns of the motor neurons, control the contractions, movements, and behavior in the periphery? In two earlier papers, we developed a realistic mathematical model of the B15/B16-ARC neuromuscular system and its modulation. Here we use this model to study the functional performance of the system in a realistic behavioral task. We run the model with two kinds of inputs: a simple set of regular motor neuron firing patterns that allows us to examine the entire space of patterns, and the real firing patterns of B15 and B16 previously recorded in a 21/2-h-long meal of 749 cycles in an intact feeding animal. These real patterns are extremely irregular. Our main conclusions are the following. 1) The modulation in the periphery is necessary for superior functional performance. 2) The components of the modulatory network interact in nonlinear, context- and task-dependent combinations for best performance overall, although not necessarily in any particular cycle. 3) Both the fast and the slow dynamics of the modulatory state make important contributions. 4) The nervous system controls different components of the periphery to different degrees. To some extent the periphery operates semiautonomously. However, the structure of the peripheral modulatory network ensures robust performance under all circumstances, even with the irregular motor neuron firing patterns and even when the parameters of the functional task are randomly varied from cycle to cycle to simulate a variable feeding environment. In the variable environment, regular firing patterns, which are fine-tuned to one particular task, fail to provide robust performance. We propose that the CPG generates the irregular firing patterns, which nevertheless are guaranteed to give robust performance overall through the actions of the peripheral modulatory network, as part of a trial-and-error feeding strategy in a variable, uncertain environment.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3