Time-resolved quantification of the dynamic extracellular space in the brain: study of cortical spreading depression

Author:

Zhao Hui-Hui1,Du Hong1,Cai Yujie1,Liu Chao1,Xie Zeyu2,Chen Kevin C.13

Affiliation:

1. Multidisciplinary Research Center, Shantou University, Shantou, Guangdong, China

2. Neurosurgery Division, Second Affiliated Hospital of the School of Medicine, Shantou University, Shantou, Guangdong, China

3. Department of Biomedical Engineering, Shantou University, Shantou, Guangdong, China

Abstract

Extracellular diffusion in the brain is customarily characterized by two parameters, the extracellular space (ECS) volume fraction α and the diffusion tortuosity λ. How these two parameters are temporarily modified and correlated in a physiological/pathological event remains unclear to date. Using tetramethylammonium (TMA+) as an ECS ion tracer in a newly updated iontophoretic sinusoidal method, we studied in this work the dynamic α( t) and λ( t) in rat somatosensory cortex during spreading depression (SD). Temporal variations of α( t) and λ( t), as evoked by SD, were obtained through analyses of the extracellular TMA+ diffusion waveform resulting from a sinusoidally modulated point source. Most of the time, cortical SD induced coordinated α( t) decreases and λ( t) increases. In rare occasions, SD induced sole decreases of α( t) with no changes in λ( t). The independent modulation of α( t) and λ( t) was neither associated with cortical anatomy nor with the specific shape of the SD field potential wave. Changes of α( t) and λ( t) often took place acutely at the onset of SD, followed by a more transient modulation. Compared with the prior iontophoretic methods of TMA+, the sinusoidal method provides time-resolved quantification of α( t) and λ( t) in relative terms but also raises a higher property requirement on the TMA+-selective microelectrode. The sinusoidal method could become a valuable tool in the studies of the dynamic ECS response in various brain events. NEW & NOTEWORTHY An iontophoretic sinusoidal method was applied to study the dynamic changes of two extracellular space parameters, the extracellular volume fraction α( t) and tortuosity λ( t), in the brain during cortical spreading depression. Both parameters showed coordinated (most often) and independent (rarely) modulations in spreading depression. The sinusoidal method is equally applicable to other acute pathological events and a valuable tool to study the functional role of extracellular space in brain events.

Funder

National Natural Science Foundation of China (NSFC)

Shantou City Scientific Research Program

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3