Adrenalectomy Potentiates Noradrenergic Suppression of GABAergic Transmission in Parvocellular Neurosecretory Neurons of Hypothalamic Paraventricular Nucleus

Author:

Yang Jian Hua,Li Long Hua,Shin Seung Yub,Lee Sora,Lee So Yeong,Han Seong Kyu,Ryu Pan Dong

Abstract

Glucocorticoids are known to regulate both the noradrenergic and GABAergic inputs to the paraventricular nucleus (PVN). However, little is known about the effects of glucocorticoids on the interaction of these two input systems. Here we examined the effects of bilateral adrenalectomy (ADX) on the noradrenergic modulation of GABAergic transmission in the type II PVN neurons labeled with a retrograde dye injected into the pituitary stalk. Noradrenaline either reduced or augmented the frequency of spontaneous inhibitory postsynaptic current (sIPSC) without changing the amplitude and decay time constant. These effects were blocked by α2A- and α1A/1L-adrenoceptor antagonists, respectively. ADX increased the proportion of the neurons showing the noradrenergic reduction and the extent of reduction in the IPSC frequency. The ADX-induced changes were reversed by supplementation of ADX rats with corticosterone (10-mg pellet). ADX also potentiated the noradrenergic reduction in the frequency of miniature IPSC and paired-pulse facilitation of evoked IPSC. BRL 44408 (3 μM), a α2A-adrenoceptor antagonist, blocked the noradrenergic reduction in ADX rats. Corticotropin-releasing hormone and/or vasopressin transcripts were detected in neurons displaying noradrenergic augmentation or reduction of IPSC frequency. ADX enhanced the proportion of neurons expressing corticotropin-releasing hormone. Collectively, the results suggest that depletion of corticosterone by ADX markedly potentiates the noradrenergic suppression of GABAergic transmission mediated by the α2A-adrenoceptors on the GABAergic terminals in the parvocellular neurosecretory PVN neurons. These results may provide a novel synaptic mechanism for the glucocorticoid-induced plasticity in the noradrenergic modulation of neuroendocrine function of the PVN.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3