Affiliation:
1. Integrative Center for Learning and Memory, Departments of Neurobiology and Psychology, UCLA, Los Angeles, California
Abstract
Determining the order of sensory events separated by a few hundred milliseconds is critical to many forms of sensory processing, including vocalization and speech discrimination. Although many experimental studies have recorded from auditory order-sensitive and order-selective neurons, the underlying mechanisms are poorly understood. Here we demonstrate that universal properties of cortical synapses—short-term synaptic plasticity of excitatory and inhibitory synapses—are well suited for the generation of order-selective neural responses. Using computational models of canonical disynaptic circuits, we show that the dynamic changes in the balance of excitation and inhibition imposed by short-term plasticity lead to the generation of order-selective responses. Parametric analyses predict that among the forms of short-term plasticity expressed at excitatory-to-excitatory, excitatory-to-inhibitory, and inhibitory-to-excitatory synapses, the single most important contributor to order-selectivity is the paired-pulse depression of inhibitory postsynaptic potentials (IPSPs). A topographic model of the auditory cortex that incorporates short-term plasticity accounts for both context-dependent suppression and enhancement in response to paired tones. Together these results provide a framework to account for an important computational problem based on ubiquitous synaptic properties that did not yet have a clearly established computational function. Additionally, these studies suggest that disynaptic circuits represent a fundamental computational unit that is capable of processing both spatial and temporal information.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
20 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献