Affiliation:
1. Department of Neurobiology, University School of Physical Education, Poznań, Poland; and
2. Spinal Cord Research Center and Faculty of Kinesiology & Recreation Management, University of Manitoba, Winnipeg, Canada
Abstract
The aim of the study was to determine whether chronic muscle overload has measurable effect on electrophysiological properties of motoneurons (MNs), and whether duration of this overload influences intensity of adaptations. The compensatory overload was induced in the rat medial gastrocnemius (MG) by bilateral tenotomy of its synergists (lateral gastrocnemius, soleus, and plantaris); as a result, only the MG was able to evoke the foot plantar flexion. To assure regular activation of the MG muscle, rats were placed in wheel-equipped cages and subjected to a low-level treadmill exercise. The intracellular recordings from MG motoneurons were made after 5 or 12 wk of the overload, and in a control group of intact rats. Some of the passive and threshold membrane properties as well as rhythmic firing properties were considerably modified in fast-type MNs, while remaining unaltered in slow-type MNs. The significant changes included a shortening of the spike duration and the spike rise time, an increase of the afterhyperpolarization amplitude, an increase of the input resistance, a decrease of the rheobase, and a decrease of the minimum current necessary to evoke steady-state firing. The data suggest higher excitability of fast-type MNs innervating the overloaded muscle, and a shift towards electrophysiological properties of slow-type MNs. All of the adaptations could be observed after 5 wk of the compensatory overload with no further changes occurring after 12 wk. This indicates that the response to an increased level of chronic activation of MNs is relatively quick and stable.
Funder
Polish National Science Center
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
27 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献