Glycinergic Inputs to Cardiac Vagal Neurons in the Nucleus Ambiguus Are Inhibited by Nociceptin and μ-Selective Opioids

Author:

Venkatesan Priya1,Baxi Sunit1,Evans Cory1,Neff Robert1,Wang Xin1,Mendelowitz David1

Affiliation:

1. Department of Pharmacology, George Washington University, Washington, DC 20037

Abstract

Most parasympathetic regulation of heart rate originates from preganglionic cardiac vagal neurons within the nucleus ambiguus. Little is known regarding the modulation of glycinergic transmission to these neurons. However, the presence of μ-opioid receptors and opioid-receptor-like (ORL1) receptors within the ambiguus, together with the presence of endogenous ligands for both receptor types in the same area, suggests opioids may modulate synaptic transmission to cardiac vagal neurons. This study therefore examined the effects of endomorphin-1 and endomorphin-2 (the μ-selective endogenous peptides), DAMGO (a synthetic, μ-selective agonist), and nociceptin (the ORL1-selective endogenous peptide) on spontaneous glycinergic inhibitory postsynaptic currents (IPSCs) in rat cardiac parasympathetic neurons. All four of the opioids used in this study decreased spontaneous IPSCs. At concentrations of 100 μM, the amplitude of the IPSCs was reduced significantly by nociceptin (–56.6%), DAMGO (–46.5%), endomorphin-1 (–45.1%), and endomorphin-2 (–26%). IPSC frequency was also significantly reduced by nociceptin (–61.1%), DAMGO (–69.9%), and endomorphin-1 (–40.8%) but not endomorphin-2. Lower concentrations of nociceptin and DAMGO (10–30 μM) also effectively decreased IPSC amplitude and frequency. The inhibitory effects of DAMGO were blocked by d-Phe-Cys-Tyr-d-Trp-Orn-Thr-Pen-Thr-NH2(C-TOP; 10 μM), a selective μ-receptor antagonist. Neither nociceptin nor DAMGO inhibited the postsynaptic responses evoked by exogenous application of glycine or affected TTX-insensitive glycinergic mini-IPSCs. These results indicate that μ-selective opioids and nociceptin act on preceding neurons to decrease glycinergic inputs to cardiac vagal neurons in the nucleus ambiguus. The resulting decrease in glycinergic transmission would increase parasympathetic activity to the heart and may be a mechanism by which opioids induce bradycardia.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 19 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3