NMDA Receptor-Mediated Currents in Rat Cerebellar Granule and Unipolar Brush Cells

Author:

Billups Daniela1,Liu Ying-Bing1,Birnstiel Susanne1,Slater N. Traverse1

Affiliation:

1. Department of Physiology and Institute for Neuroscience, Northwestern University Medical School, Chicago, Illinois 60611

Abstract

The properties of N-methyl-d-aspartate (NMDA) receptor-mediated currents at the giant cerebellar mossy-fiber unipolar brush cell (UBC) synapse were compared with those of adjacent granule cells using patch-clamp recording methods in thin slices of rat cerebellar nodulus. In UBCs, NMDA receptor-mediated excitatory postsynaptic currents (EPSCs) decayed as a single exponential whose time constant was independent of membrane potential. The EPSC was reduced in all cells by the NR1/NR2B-selective antagonist ifenprodil, and the Zn2+ chelator N,N,N′,N′-tetrakis(2-pyridylmethyl)ethylenediamine (TPEN) produced a transient potentiation in 50% of cells. In contrast, the NMDA EPSC in granule cells decayed as a double exponential that dramatically switched to a slower rate at positive membrane potentials. The synaptic response in some granule cells also displayed a late second peak at positive potentials, and in others, activation of mossy fibers produced repetitive trains of EPSCs indicating they may be postsynaptic to the UBC network. Single-channel recordings of outside-out somatic patches from UBCs in magnesium-free solution revealed only high-conductance (50 pS) channels whose open time was increased with depolarization, but the opening frequency was decreased to yield a low ( p o = 0.0298), voltage-independent opening probability. Lowering extracellular calcium (2.5–0.25 mM) had no effects on channel gating, although an increase of single-channel conductance was observed at lower calcium concentrations. Taken together, the data support the notion that the NMDA receptor in UBCs may comprise both NR1/NR2A and NR1/NR2B receptors. Furthermore, the properties of the EPSC in these two classes of feedforward glutamatergic interneurons display fundamental differences that may relate to their roles in synaptic integration.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 21 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3