Time Course of Vestibuloocular Reflex Suppression During Gaze Shifts

Author:

Cullen Kathleen E.1,Huterer Marko1,Braidwood Danielle A.1,Sylvestre Pierre A.1

Affiliation:

1. Aerospace Medical Research Unit, McGill University, Montreal, Quebec H3G 1Y6, Canada

Abstract

Although numerous investigations have probed the status of the vestibuloocular (VOR) during gaze shifts, its exact status remains strangely elusive. The goal of the present study was to precisely evaluate the dynamics of VOR suppression immediately before, throughout, and just after gaze shifts. A torque motor was used to apply rapid (100°/s), short-duration (20–30 ms) horizontal head perturbations in three Rhesus monkeys. The status of the VOR elicited by this transient head perturbation was first compared during 15, 40, and 60° gaze shifts. The level of VOR suppression just after gaze-shift onset (40 ms) increased with gaze-shift amplitude in two monkeys, approaching values of 80 and 35%. In contrast, in the third monkey, the VOR was not significantly attenuated for all gaze-shift amplitudes. The time course of VOR attenuation was then studied in greater detail for all three monkeys by imposing the same short-duration head perturbations 40, 100, and 150 ms after the onset of 60° gaze shifts. Overall we found a consistent trend, in which VOR suppression was maximal early in the gaze shift and progressively recovered to reach normal values near gaze-shift end. However, the high variability across subjects prevented establishing a unifying description of the absolute level and time course of VOR suppression during gaze shifts. We propose that differences in behavioral strategies may account, at least in part, for these differences between subjects.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Vestibulo-Ocular Reflex Suppression: Clinical Relevance and Assessment in the Digital Age;Digital Biomarkers;2024-04-12

2. Cognition in vestibular disorders: state of the field, challenges, and priorities for the future;Frontiers in Neurology;2024-01-18

3. Vestibular motor control;Motor System Disorders, Part I: Normal Physiology and Function and Neuromuscular Disorders;2023

4. Influence of predictability on saccade timing in a head impulse VOR suppression task;Experimental Brain Research;2022-01-06

5. The quick-phase system;Progress in Brain Research;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3