Persistent Sodium Current, Membrane Properties and Bursting Behavior of Pre-Bötzinger Complex Inspiratory Neurons In Vitro

Author:

Del Negro Christopher A.1,Koshiya Naohiro12,Butera Robert J.3,Smith Jeffrey C.1

Affiliation:

1. Cellular and Systems Neurobiology Section, Laboratory of Neural Control, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20892-4455;

2. Blanchette Rockefeller Neurosciences Institute, Rockville, Maryland 20850-3332; and

3. Laboratory for Neuroengineering, Institute for Bioengineering and Biosciences, Georgia Institute of Technology, Atlanta, Georgia 30332

Abstract

We measured persistent Na+current and membrane properties of bursting-pacemaker and nonbursting inspiratory neurons of the neonatal rat pre-Bötzinger complex (pre-BötC) in brain stem slice preparations with a rhythmically active respiratory network in vitro. In whole-cell recordings, slow voltage ramps (≤100 mV/s) inactivated the fast, spike-generating Na+ current and yielded N-shaped current-voltage relationships with nonmonotonic, negative-slope regions between −60 and −35 mV when the voltage-sensitive component was isolated. The underlying current was a TTX-sensitive persistent Na+ current ( I NaP) since the inward current was present at slow voltage ramp speeds (3.3–100 mV/s) and the current was blocked by 1 μM TTX. We measured the biophysical properties of I NaP after subtracting the voltage-insensitive “leak” current ( I Leak) in the presence of Cd2+ and in some cases tetraethylammonium (TEA). Peak I NaP ranged from −50 to −200 pA at a membrane potential of −30 mV. Decreasing the speed of the voltage ramp caused time-dependent I NaPinactivation, but this current was present at ramp speeds as low as 3.3 mV/s. I NaP activated at −60 mV and obtained half-maximal activation near −40 mV. The subthreshold voltage dependence and slow inactivation kinetics of I NaP, which closely resemble those of I NaP mathematically modeled as a burst-generation mechanism in pacemaker neurons of the pre-BötC, suggest that I NaP predominantly influences bursting dynamics of pre-BötC inspiratory pacemaker neurons in vitro. We also found that the ratio of persistent Na+conductance to leak conductance ( g NaP/ g Leak) can distinguish the phenotypic subpopulations of bursting pacemaker and nonbursting inspiratory neurons: pacemaker neurons showed g NaP/ g Leak> g NaP/ g Leakin nonpacemaker cells ( P < 0.0002). We conclude that I NaP is ubiquitously expressed by pre-BötC inspiratory neurons and that bursting pacemaker behavior within the heterogeneous population of inspiratory neurons is achieved with specific ratios of these two conductances, g NaP and g Leak.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 227 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3