Anterior Inferotemporal Neurons of Monkeys Engaged in Object Recognition Can be Highly Sensitive to Object Retinal Position

Author:

DiCarlo James J.1,Maunsell John H. R.1

Affiliation:

1. Howard Hughes Medical Institute and Division of Neuroscience, Baylor College of Medicine, Houston, Texas 77030

Abstract

Visual object recognition is computationally difficult because changes in an object's position, distance, pose, or setting may cause it to produce a different retinal image on each encounter. To robustly recognize objects, the primate brain must have mechanisms to compensate for these variations. Although these mechanisms are poorly understood, it is thought that they elaborate neuronal representations in the inferotemporal cortex that are sensitive to object form but substantially invariant to other image variations. This study examines this hypothesis for image variation resulting from changes in object position. We studied the effect of small differences (±1.5°) in the retinal position of small (0.6° wide) visual forms on both the behavior of monkeys trained to identify those forms and the responses of 146 anterior IT (AIT) neurons collected during that behavior. Behavioral accuracy and speed were largely unaffected by these small changes in position. Consistent with previous studies, many AIT responses were highly selective for the forms. However, AIT responses showed far greater sensitivity to retinal position than predicted from their reported receptive field (RF) sizes. The median AIT neuron showed a ∼60% response decrease between positions within ±1.5° of the center of gaze, and 52% of neurons were unresponsive to one or more of these positions. Consistent with previous studies, each neuron's rank order of target preferences was largely unaffected across position changes. Although we have not yet determined the conditions necessary to observe this marked position sensitivity in AIT responses, we rule out effects of spatial-frequency content, eye movements, and failures to include the RF center. To reconcile this observation with previous studies, we hypothesize that either AIT position sensitivity strongly depends on object size or that position sensitivity is sharpened by extensive visual experience at fixed retinal positions or by the presence of flanking distractors.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 171 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Inactivation of face-selective neurons alters eye movements when free viewing faces;Proceedings of the National Academy of Sciences;2024-01-10

2. Cortical field maps across human sensory cortex;Frontiers in Computational Neuroscience;2023-12-15

3. Binding in visual working memory is task-dependent;2023-11-03

4. A Pluralist Perspective on Shape Constancy;The British Journal for the Philosophy of Science;2023-08-17

5. Inactivation of face selective neurons alters eye movements when free viewing faces;2023-06-24

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3