Frequency-Dependent Processing in the Vibrissa Sensory System

Author:

Moore Christopher I.1

Affiliation:

1. Massachusetts Institute of Technology, McGovern Institute for Brain Research and Department of Brain and Cognitive Sciences, Cambridge, Massachusetts 02139

Abstract

The vibrissa sensory system is a key model for investigating principles of sensory processing. Specific frequency ranges of vibrissa motion, generated by rodent sensory behaviors (e.g., active exploration or resting) and by stimulus features, characterize perception by this system. During active exploration, rats typically sweep their vibrissae at ∼4–12 Hz against and over tactual surfaces, and during rest or quiescence, their vibrissae are typically still (<1 Hz). When a vibrissa is swept over an object, microgeometric surface features (e.g., grains on sandpaper) likely create higher frequency vibrissa vibrations that are greater than or equal to several hundred Hertz. In this article, I first review thalamic and cortical neural responses to vibrissa stimulation at 1–40 Hz. I then propose that neural dynamics optimize the detection of stimuli in low-frequency contexts (e.g., 1 Hz) and the discrimination of stimuli in the whisking frequency range. In the third section, I describe how the intrinsic biomechanical properties of vibrissae, their ability to resonate when stimulated at specific frequencies, may promote detection and discrimination of high-frequency inputs, including textured surfaces. In the final section, I hypothesize that distinct low- and high-frequency processing modes may exist in the somatosensory cortex (SI), such that neural responses to stimuli at 1–40 Hz do not necessarily predict responses to higher frequency inputs. In total, these studies show that several frequency-specific mechanisms impact information transmission in the vibrissa sensory system and suggest that these properties play a crucial role in perception.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 98 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3