Differential Roles for mGluR1 and mGluR5 in the Persistent Prolongation of Epileptiform Bursts

Author:

Merlin Lisa R.1

Affiliation:

1. Department of Neurology and Department of Physiology and Pharmacology, The State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203

Abstract

Transient activation of group I metabotropic glutamate receptors (mGluRs) with the selective agonist ( S)-3,5-dihydroxyphenylglycine (DHPG) produces persistent prolongation of epileptiform bursts in guinea pig hippocampal slices, the maintenance of which can be reversibly suppressed with group I mGluR antagonists. To determine the relative roles of mGluR1 and mGluR5 in these group I mGluR-dependent induction and maintenance processes, subtype-selective antagonists were utilized. In the presence of picrotoxin, DHPG (50 μM, 20–45 min) converted interictal bursts into 1- to 3-s discharges that persisted for hours following washout of the mGluR agonist. 2-methyl-6-(phenylethynyl)-pyridine (MPEP, an mGluR5 antagonist; 25 μM) and (+)-2-methyl-4-carboxyphenylglycine (LY367385, an mGluR1 antagonist; 20–25 μM) each significantly suppressed the ongoing expression of the mGluR-induced prolonged bursts. However, LY367385 was more effective, reducing the burst prolongation by nearly 90%; MPEP only produced a 64% reduction in burst prolongation. Nevertheless, MPEP was more effective at preventing the induction of the burst prolongation; all 10 slices tested failed to express prolonged bursts both during and after co-application of DHPG with MPEP. Co-application of DHPG with LY367385, in contrast, resulted in significant burst prolongation (in 68% of slices tested) that was revealed on washout of the two agents. These results suggest that while both receptor subtypes participate in both the induction and maintenance of mGluR-mediated burst prolongation, mGluR1 activation plays a greater role in sustaining the expression of prolonged bursts, whereas mGluR5 activation may be a more critical contributor to the induction process underlying this type of epileptogenesis.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3