Affiliation:
1. Department of Neurology and Department of Physiology and Pharmacology, The State University of New York Health Science Center at Brooklyn, Brooklyn, New York 11203
Abstract
Transient activation of group I metabotropic glutamate receptors (mGluRs) with the selective agonist ( S)-3,5-dihydroxyphenylglycine (DHPG) produces persistent prolongation of epileptiform bursts in guinea pig hippocampal slices, the maintenance of which can be reversibly suppressed with group I mGluR antagonists. To determine the relative roles of mGluR1 and mGluR5 in these group I mGluR-dependent induction and maintenance processes, subtype-selective antagonists were utilized. In the presence of picrotoxin, DHPG (50 μM, 20–45 min) converted interictal bursts into 1- to 3-s discharges that persisted for hours following washout of the mGluR agonist. 2-methyl-6-(phenylethynyl)-pyridine (MPEP, an mGluR5 antagonist; 25 μM) and (+)-2-methyl-4-carboxyphenylglycine (LY367385, an mGluR1 antagonist; 20–25 μM) each significantly suppressed the ongoing expression of the mGluR-induced prolonged bursts. However, LY367385 was more effective, reducing the burst prolongation by nearly 90%; MPEP only produced a 64% reduction in burst prolongation. Nevertheless, MPEP was more effective at preventing the induction of the burst prolongation; all 10 slices tested failed to express prolonged bursts both during and after co-application of DHPG with MPEP. Co-application of DHPG with LY367385, in contrast, resulted in significant burst prolongation (in 68% of slices tested) that was revealed on washout of the two agents. These results suggest that while both receptor subtypes participate in both the induction and maintenance of mGluR-mediated burst prolongation, mGluR1 activation plays a greater role in sustaining the expression of prolonged bursts, whereas mGluR5 activation may be a more critical contributor to the induction process underlying this type of epileptogenesis.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
66 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献