Acute dopamine receptor blockade in substantia nigra pars reticulata: a possible model for drug-induced Parkinsonism

Author:

Cáceres-Chávez Verónica Alejandra1,Hernández-Martínez Ricardo1,Pérez-Ortega Jesús2,Herrera-Valdez Marco Arieli3,Aceves Jose J.4,Galarraga Elvira1,Bargas José1ORCID

Affiliation:

1. División de Neurociencias, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, México City, México

2. Departamento de Neurobiología del Desarrollo y Neurofisiología, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México

3. Departamento de Matemáticas, Facultad de Ciencias, Universidad Nacional Autónoma de México, México City, México

4. Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, México

Abstract

Dopamine (DA) depletion modifies the firing pattern of neurons in the substantia nigra pars reticulata (SNr), shifting their mostly tonic firing toward irregularity and bursting, traits of pathological firing underlying rigidity and postural instability in Parkinson’s disease (PD) patients and animal models of Parkinsonism (PS). Drug-induced Parkinsonism (DIP) represents 20–40% of clinical cases of PS, becoming a problem for differential diagnosis, and is still not well studied with physiological tools. It may co-occur with tardive dyskinesia. Here we use in vitro slice preparations including the SNr to observe drug-induced pathological firing by using drugs that most likely produce it, DA-receptor antagonists (SCH23390 plus sulpiride), to compare with firing patterns found in DA-depleted tissue. The hypothesis is that SNr firing would be similar under both conditions, a prerequisite to the proposal of a similar preparation to test other DIP-producing drugs. Firing was analyzed with three complementary metrics, showing similarities between DA depletion and acute DA-receptor blockade. Moreover, blockade of either nonselective cationic channels or Cav3 T-type calcium channels hyperpolarized the membrane and abolished bursting and irregular firing, silencing SNr neurons in both conditions. Therefore, currents generating firing in control conditions are in part responsible for pathological firing. Haloperidol, a DIP-producing drug, reproduced DA-receptor antagonist firing modifications. Since acute DA-receptor blockade induces SNr neuron firing similar to that found in the 6-hydroxydopamine model of PS, output basal ganglia neurons may play a role in generating DIP. Therefore, this study opens the way to test other DIP-producing drugs. NEW & NOTEWORTHY Dopamine (DA) depletion enhances substantia nigra pars reticulata (SNr) neuron bursting and irregular firing, hallmarks of Parkinsonism. Several drugs, including antipsychotics, antidepressants, and calcium channel antagonists, among others, produce drug-induced Parkinsonism. Here we show the first comparison between SNr neuron firing after DA depletion vs. firing found after acute blockade of DA receptors. It was found that firing in both conditions is similar, implying that pathological SNr neuron firing is also a physiological correlate of drug-induced Parkinsonism.

Funder

CONACyT

DGAPA-PAPIIT-UNAM

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3