Author:
Hatcher Nathan G.,Sudlow Leland C.,Moroz Leonid L.,Gillette Rhanor
Abstract
Critical roles for nitric oxide (NO) in regulating cell and tissue physiology are broadly appreciated, but aspects remain to be explored. In the mollusk Pleurobranchaea, NO synthase activity is high in CNS ganglia containing motor networks for feeding and locomotion, where a cAMP-gated cation current ( INa,cAMP) is also prominent in many neurons. We examined effects of NO on INa,cAMP using voltage-clamp methods developed to analyze cAMP signaling in the live neuron, focusing on the identified metacerebral giant neuron of the feeding network. NO donors enhanced the INa,cAMP response to injected cAMP by an averaged 85%. In dose-response measures, NO increased the current stimulated by cAMP injection without altering either apparent cAMP binding affinity or cooperativity of current activation. NO did not detectably alter levels of native cAMP or synthesis or degradation rates as observable in both current saturation and decay rate of INa,cAMP responses to cAMP injection. NO actions were not exerted by cGMP signaling, as they were not mimicked by cGMP analogue nor blocked by inhibitors of guanylate cyclase and protein kinase G. NO potentiation of INa,cAMP was broadly distributed among many other neurons of the feeding motor network in the buccal ganglion. However, NO did not affect a second type of INa,cAMP found in locomotor neurons of the pedal ganglia. These results suggest that NO acts through a novel mechanism to regulate the gain of cAMP-dependent neuromodulatory pathways that activate INa,cAMP and may thereby affect the set points of feeding network excitability and reactivity to exogenous input.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
11 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献