Author:
Chen Chu,Bazan Nicolas G.
Abstract
The significance of cyclooxygenases (COXs), the rate-limiting enzymes that convert arachidonic acid (AA) to prostaglandins (PGs) in the brain, is unclear, although they have been implicated in inflammatory responses and in some neurological disorders such as epilepsy and Alzheimer's disease. Recent evidence that COX-2, which is expressed in postsynaptic dendritic spines, regulates PGE2signaling in activity-dependent long-term synaptic plasticity at hippocampal perforant path-dentate granule cell synapses, suggests an important role of the COX-2–generated PGE2in synaptic signaling. However, little is known of how endogenous PGE2regulates neuronal signaling. Here we showed that endogenous PGE2selectively regulates fundamental membrane and synaptic properties in the hippocampus. Somatic and dendritic membrane excitability was significantly reduced when endogenous PGE2was eliminated with a selective COX-2 inhibitor in hippocampal CA1 pyramidal neurons in slices. Exogenous application of PGE2produced significant increases in frequency of firing, excitatory postsynaptic potentials (EPSP) amplitude, and temporal summation in slices treated with the COX-2 inhibitor. The PGE2-induced increase in membrane excitability seemed to result from its inhibition of the potassium currents, which in turn, boosted dendritic Ca2+influx during dendritic-depolarizing current injections. In addition, the PGE2-induced enhancement of EPSPs was blocked by eliminating both PKA and PKC activities. These findings indicate that endogenous PGE2dynamically regulates membrane excitability, synaptic transmission, and plasticity and that the PGE2-induced synaptic modulation is mediated via cAMP-PKA and PKC pathways in rat hippocampal CA1 pyramidal neurons.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
127 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献