Context-dependent inhibition of unloaded muscles during the long-latency epoch

Author:

Nashed Joseph Y.1,Kurtzer Isaac L.2,Scott Stephen H.134

Affiliation:

1. Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada;

2. Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, New York;

3. Department of Anatomy and Cell Biology, Queen's University, Kingston, Ontario, Canada; and

4. Department of Medicine, Queen's University, Kingston, Ontario, Canada

Abstract

A number of studies have highlighted the sophistication of corrective responses in lengthened muscles during the long-latency epoch. However, in various contexts, unloading can occur, which requires corrective actions from a shortened muscle. Here, we investigate the sophistication of inhibitory responses in shortened muscles due to unloading. Our first experiment quantified the inhibitory responses following an unloading torque that displaced the hand either into or away from a peripheral target. We observed larger long-latency inhibitory responses when perturbed into the peripheral target compared with away from the target. In our second experiment, we characterized the degree of inhibition following unloading with respect to different levels of preperturbation muscle activity. We initially observed that the inhibitory activity during the short-latency epoch scaled with increased levels of preperturbation muscle activity. However, this scaling peaked early in the R2 epoch (∼50 ms) but then quickly diminished through the rest of the long-latency epoch. Finally, in experiment 3, we investigated whether inhibitory perturbation responses consider intersegmental dynamics of the limb. We quantified unloading responses for either pure shoulder or pure elbow torques that evoked similar motion at the shoulder but different elbow motion. The long-latency inhibitory response in the shoulder, unlike the short-latency, was greater for the shoulder torque compared with the response following an elbow torque, as previously observed for a loading response. Taken together, these results illustrate that the long-latency unloading response is capable of a similar level of complexity as observed when loads are applied to the limb.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3