Kinetic adaptation during locomotion on a split-belt treadmill

Author:

Mawase Firas12,Haizler Tamar1,Bar-Haim Simona32,Karniel Amir12

Affiliation:

1. Department of Biomedical Engineering, Ben-Gurion University of the Negev, Beer-Sheva, Israel;

2. Zlotowski Center for Neuroscience, Ben-Gurion University of the Negev, Beer-Sheva, Israel

3. Department of Physiotherapy, Ben-Gurion University of the Negev, Beer-Sheva, Israel; and

Abstract

It has been suggested that a feedforward control mechanism drives the adaptation of the spatial and temporal interlimb locomotion variables. However, the internal representation of limb kinetics during split-belt locomotion has not yet been studied. In hand movements, it has been suggested that kinetic and kinematic parameters are controlled by separate neural processes; therefore, it is possible that separate neural processes are responsible for kinetic and kinematic locomotion parameters. In the present study, we assessed the adaptation of the limb kinetics by analyzing the ground reaction forces (GRFs) as well as the center of pressure (COP) during adaptation to speed perturbation, using a split-belt treadmill with an integrated force plate. We found that both the GRF of each leg at initial contact and the COP changed gradually and showed motor aftereffects during early postadaptation, suggesting the use of a feedforward predictive mechanism. However, the GRF of each leg in the single-support period used a feedback control mechanism. It changed rapidly during the adaptation phase and showed no motor aftereffect when the speed perturbation was removed. Finally, we found that the motor adaptation of the GRF and the COP are mediated by a dual-rate process. Our results suggest two important contributions to neural control of locomotion. First, different control mechanisms are responsible for forces at single- and double-support periods, as previously reported for kinematic variables. Second, our results suggest that motor adaptation during split-belt locomotion is mediated by fast and slow adaptation processes.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 67 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3