Abstract
Surface electromyography is used in research, to estimate the activity of muscle, in prosthetic design, to provide a control signal, and in biofeedback, to provide subjects with a visual or auditory indication of muscle contraction. Unfortunately, successful applications are limited by the variability in the signal and the consequent poor quality of estimates. I propose to use a nonlinear recursive filter based on Bayesian estimation. The desired filtered signal is modeled as a combined diffusion and jump process and the measured electromyographic (EMG) signal is modeled as a random process with a density in the exponential family and rate given by the desired signal. The rate is estimated on-line by calculating the full conditional density given all past measurements from a single electrode. The Bayesian estimate gives the filtered signal that best describes the observed EMG signal. This estimate yields results with very low short-time variability but also with the capability of very rapid response to change. The estimate approximates isometric joint torque with lower error and higher signal-to-noise ratio than current linear methods. Use of the nonlinear filter significantly reduces noise compared with current algorithms, and it may therefore permit more effective use of the EMG signal for prosthetic control, biofeedback, and neurophysiology research.
Publisher
American Physiological Society
Subject
Physiology,General Neuroscience
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献