Directional selectivity in a nonspiking interneuron of the crayfish optic lobe: evaluation of a linear model

Author:

Glantz R. M.1

Affiliation:

1. Department of Cell Biology and Biochemistry, Rice University, Houston, Texas 77251.

Abstract

1. Intracellular recordings, sine wave gratings, and paired flashes were used to characterize the directional selectivity (DS) of the peripheral neurons of the crayfish visual pathway. DS was observed in nonspiking tangential (Tan1) neurons of the distal medulla externa and it is expressed by the amplitude of the modulated synaptic potential elicited with drifting gratings. 2. The directional mechanism was characterized by variations in the grating contrast, spatial frequency, and temporal frequency. DS is both contrast and velocity dependent. 3. The velocity dependence of DS for fixed stimulus contrast can be described by a linear model including a delay and subtractive compare operation. This mechanism operates over the entire useful range of spatial and temporal frequencies. 4. The parameters of the linear model can be estimated from the spatiotemporal structure of the Tan1 cell receptive field. The receptive field exhibits a spatially asymmetric inhibitory subfield that is offset from the excitatory subfield by 3–5 degrees (1–2 ommatidia). The inhibition is delayed relative to excitation by 50–100 ms. 5. The contrast dependence of DS reflects an apparent nonlinearity in the mechanism that determines the null response amplitude. The preferred response magnitude is approximately linear with variations in contrast. 6. The nonlinearity observed in the null direction can in principle be attributed to either a tonic excitation at 0 contrast or a threshold for inhibition. There is evidence for both processes in the Tan1 cell visual response.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 13 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3