Film autoradiography identifies unique features of [125I]3,3'5'-(reverse) triiodothyronine transport from blood to brain

Author:

Cheng L. Y.1,Outterbridge L. V.1,Covatta N. D.1,Martens D. A.1,Gordon J. T.1,Dratman M. B.1

Affiliation:

1. Department of Medicine, Medical College of Pennsylvania, Philadelphia 19129.

Abstract

1. Steady-state iodothyronine profiles in plasma are composed of thyroid gland-synthesized hormones (mainly thyroxine) and tissue iodothyronine metabolites (mainly triiodothyronine and reverse triiodothyronine) that have entered the bloodstream. The hormones circulate in noncovalently bound complexes with a panoply of carrier proteins. Transthyretin (TTR), the major high-affinity thyroid hormone binding protein in rat plasma, is formed in the liver. It is also actively and independently synthesized in choroid plexus, where its function as a chaperone of thyroid hormones from bloodstream to cerebrospinal fluid (CSF) is undergoing close scrutiny by several groups of investigators. Because TTR has high-affinity binding sites for both thyroxine and retinol binding protein, its potential role as a mediator of combined thyroid hormone and retinoic acid availability in brain is of further interest. 2. While they are in the free state relative to their binding proteins, iodothyronines in the cerebral circulation are putatively subject to transport across both the blood-brain barrier (BBB) and choroid plexus CSF barrier (CSFB) before entering the brain. Previous autoradiographic studies had already indicated that after intravenous administration the transport mechanisms governing thyroxine and triiodothyronine entry into brain were probably similar, whereas those for reverse triiodothyronine were very different, although the basis for the difference was not established at that time. Intense labeling seen over brain ventricles after intravenous administration of all three iodothyronines suggested that all were subject to transport across the CSFB. 3. To evaluate the role of the BBB and CSFB in determining iodothyronine access to brain parenchyma, autoradiograms prepared after intravenous administration of [125I]-labeled hormones (revealing results of transport across both barriers) were compared with those prepared after intrathecal (icv) hormone injection (reflecting only their capacity to penetrate into the brain after successfully navigating the CSFB). 4. Those studies revealed that thyroxine and triiodothyronine were mainly transported across the BBB. They shared with reverse triiodothyronine a generally similar, limited pattern of penetration from CSF into the brain, with circumventricular organs likely to be the main recipients of iodothyronines (with or without retinol) transported across the CSFB. 5. Analysis of all of the images obtained after intravenous and icv hormone administration clarified the basis for the unique distribution of intravenously injected reverse triiodothyronine. The hormone is excluded by the BBB but may be subject to limited penetration into brain parenchyma via the CSF. 6. Overall the observations single out reverse triiodothyronine as the iodothyronine showing the most distinctive as well as the most limited pattern of transport from blood to brain.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3