Characterization of the membrane ion currents of a model molluscan muscle, the accessory radula closer muscle of Aplysia californica. II. Depolarization-activated K currents

Author:

Brezina V.1,Evans C. G.1,Weiss K. R.1

Affiliation:

1. Department of Physiology and Biophysics, Mount Sinai School of Medicine, New York 10029.

Abstract

1. The accessory radula closer (ARC) muscle of Aplysia californica and its innervation is a model preparation for the study of the neural and cellular mechanisms of behavioral plasticity. Much of the plasticity is mediated by release of neurotransmitters and peptide cotransmitters that modulate contractions of the muscle. Preliminary to investigating the cellular mechanisms of action of these modulators, we have characterized the major membrane ion currents present in the unmodulated ARC muscle and their likely roles in normal contraction. We have studied single dissociated but functionally intact ARC muscle fibers under voltage clamp. This is the second of three papers describing this work. In the preceding paper we described the electrophysiological properties of the fibers at hyperpolarized voltages, and characterized the two major hyperpolarized-activated currents present, a classical inwardly rectifying K current and a Cl current induced by elevated intracellular Cl-. 2. In this paper we dissect the large outward current that becomes activated when the fibers are depolarized above -50 or -40 mV. We find that this current consists of two major depolarization-activated K currents, a fast transient “A”-type current and a slower maintained delayed rectifier, with perhaps a small component of Ca(2+)-activated K current. 3. The A current begins to activate with voltage steps above -50 or -40 mV. It activates in milliseconds, then inactivates virtually completely within 100–200 ms. It is fully available for activation below -80 mV, and almost completely inactivated above -40 mV. It is Ca2+ independent, half-maximally blocked by approximately 3 mM 4-aminopyridine (4-AP) but only 460 mM tetraethylammonium (TEA). 4. The delayed rectifier both activates and inactivates more slowly and more positive than the A current. Thus it begins to activate only above -30 or -20 mV; it activates in tens of milliseconds, then inactivates incompletely over several seconds; it is fully available below -70 mV and inactivated above 0 mV. It is Ca2+ independent, half-maximally blocked by 10 mM TEA and 3–10 mM 4-AP. 5. In the following paper we describe a depolarization-activated Ca current that underlies the K currents and most likely provides Ca2+ necessary for contraction of the muscle. By activating simultaneously with the Ca current, the K currents serve to prevent spikes, so that the depolarization is confined to a range where small voltage changes provide fine control over a wide range of contraction strengths.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3