Slow sodium conductances of dorsal root ganglion neurons: intraneuronal homogeneity and interneuronal heterogeneity

Author:

Rizzo M. A.1,Kocsis J. D.1,Waxman S. G.1

Affiliation:

1. Department of Neurology, Yale University School of Medicine, New Haven06510.

Abstract

1. Voltage-dependent Na+ conductances were studied in small (18-25 microns diam) adult rat dorsal root ganglion (DRG) neurons with the use of the whole cell patch-clamp technique. Na+ currents were also recorded from larger (44-50 microns diam) neurons and compared with those of the small neurons. 2. The predominant Na+ conductance in the small neurons was selective over tetramethylammonium by at least 10-fold and was resistant to 1 microM external tetrodotoxin (TTX). Na+ conductances in many larger DRG neurons were kinetically faster and, in contrast, were blocked by 1 microM TTX. 3. The Na+ conductance in the small neurons was kinetically slow. Activation half-times were voltage dependent and ranged from 2 ms at -20 mV to 0.7 ms at +50 mV. Approximately 50% of the activation half-time was comprised of an initial delay. Inactivation half-times were voltage dependent and ranged from 11 ms at -20 mV to 2 ms at +50 mV. 4. Peak slow Na+ conductances were near maximal with conditioning potentials negative to -120 mV and were significantly reduced or eliminated with conditioning potentials positive to -40 mV. The slow Na+ conductance increased gradually with test potentials extending from -40 to +40 mV. In some cells the conductance could be saturated at +10 mV. Peak conductance/voltage relationships, although stable in a given neuron, revealed marked variability among neurons, spanning > 20- and 50-mV domains for steady-state activation and inactivation (current availability), respectively. 5. Kinetics remained stable within a given neuron over the course of an experiment. However, considerable kinetic variation was exhibited from neuron to neuron, such that the half-times of activation and of inactivation spanned an order of magnitude. In all small neurons studied there appeared to be a singular kinetic component of the current, based on sensitivity to the conditioning potential, voltage dependence of activation, and inactivation half-time. 6. Unique closing properties were exhibited by Na+ channels of the small neurons. Hyperpolarization following a depolarization-induced fully inactivated state resulted in tail currents that appeared to be the consequence of reactivation of the slow Na+ conductance. Tail currents recorded at various times during a fixed level of depolarization revealed that the underlying channels accumulated into a volatile inactivated state over the course of the preceding depolarization.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 111 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3