Time course of locomotor recovery and functional regeneration in spinal cord-transected lamprey: in vitro preparations

Author:

McClellan A. D.1

Affiliation:

1. Division of Biological Sciences, University of Missouri, Columbia 65211.

Abstract

1. Previous studies indicate that after transection of the rostral spinal cord, larval lamprey begin to recover locomotor behavior 2 wk posttransection and recovery is complete at approximately 8 wk. To examine the mechanisms underlying behavioral recovery after spinal cord transection, in the present study the time course and extent of recovery of locomotor function was examined in in vitro brain/spinal cord preparations. With these preparations the contributions of functional regeneration of descending brain stem projections to recovery of spinal locomotor function can be examined in the absence of mechanosensory inputs and descending propriospinal relay systems. 2. In in vitro preparations from normal lamprey, stimulation in brain stem locomotor regions resulted in direct descending activation of locomotor networks in the rostral, middle, and caudal spinal cord. 3. At 4 wk posttransection, in vitro locomotor activity was usually confined to the rostral spinal cord a few millimeters below the transection site. At 8 wk posttransection locomotor activity was present in both the rostral and middle spinal cord, and spinal locomotor networks at these levels could be directly activated by restored descending projections from the brain stem. 4. At 16–32 wk posttransection locomotor activity similar to that seen in normal animals was present along the spinal cord. Additional manipulations suggest that at 32 wk posttransection descending axons from brain stem command/initiation neurons had grown for relatively long distances and could directly activate the locomotor networks in the caudal spinal cord. At each recovery time examined the ranges of locomotor parameters (cycle time, burst proportion, and intersegmental phase lag) overlapped with those in normal animals. 5. In vitro locomotor activity in spinal cord-transected animals could be recorded at progressively more caudal levels below the transection site during the course of recovery. However, locomotor activity in in vitro preparations occurred for shorter distances below the lesion than in whole animals at comparable recovery times. 6. Our recent double-labeling experiments suggest that behavioral recovery in spinal cord-transected lamprey is largely due to true regeneration of preexisting descending axons rather than development of new descending projections. Thus, these results in conjunction with our behavioral, in vitro, and anatomic data suggest that functional regeneration of descending axons from the brain, as well as other mechanisms such as descending propriospinal relay systems and mechanosensory inputs, account for the gradual restoration of locomotor function in spinal cord-transected lamprey.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3