Effects of 5-HT on thalamocortical synaptic transmission in the developing rat

Author:

Rhoades R. W.1,Bennett-Clarke C. A.1,Shi M. Y.1,Mooney R. D.1

Affiliation:

1. Department of Anatomy, Medical College of Ohio, Toledo 43699–0008.

Abstract

1. Recent immunocytochemical and receptor binding data have demonstrated a transient somatotopic patterning of serotonin (5-HT)-immunoreactive fibers in the primary somatosensory cortex of developing rats and a transient expression of 5-HT1B receptors on thalamocortical axons from the ventral posteromedial thalamic nucleus (VPM). 2. These results suggest that 5-HT should strongly modulate thalamocortical synaptic transmission for a limited time during postnatal development. This hypothesis was tested in intracellular recording experiments carried out in thalamocortical slice preparations that included VPM, the thalamic radiations, and the primary somatosensory cortex. Effects of 5-HT and analogues were monitored on membrane potentials and input resistances of cortical neurons and on the amplitude of the synaptic potentials evoked in them by stimulation of VPM. 3. Results obtained from cortical neurons in slices taken from rats during the first 2 wk of life indicated that 5-HT strongly inhibited the VPM-evoked excitatory postsynaptic potential (EPSP) recorded from cortical neurons in a dose-dependent manner. In contrast, 5-HT had no significant effects on membrane potential, input resistance, or depolarizations induced by direct application of glutamic acid to cortical cells. 4. The effects of 5-HT were mimicked by the 5-HT1B receptor agonists 1-[3-(trifluoromethyl)phenyl]-piperazine (TFMPP) and 7-trifluoromethyl-4(4-methyl-1-piperazinyl)-pyrrolo[1,2-a]-quinoxaline maleate and antagonized by the 5-HT1B receptor antagonist (-)-pindolol. The 5-HT1A agonist [(+/-)8-hydroxydipropylaminotetralin HBr] (8-OH-DPAT) had less effect on the VPM-elicited EPSP, and the effects of 5-HT upon this response were generally not antagonized by either 1-(2-methoxyphenyl)-4-[4-(2- phthalimmido)butyl]piperazine HBr (a 5-HT1A antagonist) or ketanserine (a 5-HT2 antagonist) or spiperone (a 5-HT1A and 2 antagonist). 5. The ability of 5-HT to inhibit the VPM-evoked EPSP in cortical neurons was significantly reduced in slices from animals > 2 wk of age. The effectiveness of TFMPP in such animals was even more attenuated than that of 5-HT, and the effectiveness of 8-OH-DPAT was unchanged with age. These results are consistent with the disappearance of 5-HT1B receptors from thalamocortical axons after the second postnatal week and the maintenance of 5-HT1A receptors on some neurons. 6. All of the results obtained in this study are consistent with the conclusion that 5-HT has a profound, but developmentally transient, presynaptic inhibitory effect upon thalamocortical transmission in the rat's somatosensory cortex.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3