Efferent neurons and suspected interneurons in motor cortex of the awake rabbit: axonal properties, sensory receptive fields, and subthreshold synaptic inputs

Author:

Swadlow H. A.1

Affiliation:

1. Department of Psychology, University of Connecticut, Storrs06269.

Abstract

1. Properties of antidromically identified efferent neurons within the cortical representation of the vibrissae, sinus hairs, and philtrum were examined in motor cortex of fully awake adult rabbits. Efferent neurons were tested for both receptive field and axonal properties and included callosal (CC) neurons (n = 31), ipsilateral corticocortical (C-IC) neurons (n = 34) that project to primary somatosensory cortex (S-1), and corticofugal neurons of layer 5 (CF-5) (n = 33) and layer 6 (CF-6) (n = 32) that project to and/or beyond the thalamus. Appropriate collision tests demonstrated that substantial numbers of corticocortical efferent neurons project an axon to both the corpus callosum and to ipsilateral S-1. 2. Suspected interneurons (SINs, n = 37) were also studied. These neurons were not activated antidromically from any stimulus site but did respond synaptically to electrical stimulation of the ventrolateral (VL) thalamus and/or S-1 with a burst of three or more spikes at frequencies from 600 to > 900 Hz. All of these neurons also responded synaptically to stimulation of the corpus callosum. The action potentials of these neurons were much shorter in duration (mean = 0.48 ms), than those of efferent neurons (mean = 0.90 ms). 3. CF-5 neurons differed from CC, C-IC, and CF-6 neurons in their spontaneous firing rates, axonal properties, and receptive field properties. Whereas CF-5 neurons had a mean spontaneous firing rate of 4.1 spikes/s, CC, C-IC, and CF-6 neurons all had mean values of < 1 spike/s. Axonal conduction velocities of CF-5 neurons were much higher (mean = 12.76 m/s) than either CC (1.47 m/s), C-IC (0.97 m/s), or CF-6 (mean = 1.96 m/s) neurons. A decrease in antidromic latency (the "supernormal" period) followed a single prior impulse in most CC, C-IC, and CF-6 neurons but was minimal or absent in CF-5 neurons. Although all but two CF-5 neurons responded to peripheral sensory stimulation, many CC (35%), C-IC (59%), or CF-6 (66%) neurons did not. CC, CF-5, and CF-6 neurons that did not respond to sensory stimulation had significantly lower axonal conduction velocities and spontaneous firing rates than those that responded to such stimulation. 4. Sensory receptive fields of neurons in motor cortex were considerably larger than those observed in S-1 but were similar in size to those seen in secondary somatosensory cortex (S-2).(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3