Calcium currents in turtle retinal ganglion cells. I. The properties of T- and L-type currents

Author:

Liu Y.1,Lasater E. M.1

Affiliation:

1. Department of Ophthalmology, University of Utah, Health SciencesCenter, Salt Lake City 84132.

Abstract

1. Voltage-activated calcium currents from single, isolated turtle retinal ganglion cells were characterized with standard whole cell patch clamp techniques. Calcium current amplitude was increased with the use of 10 mM extracellular Ca2+, whereas sodium and potassium currents were pharmacologically suppressed. 2. A transient component, expressed in approximately 39% of the cells recorded from, closely resembled the T-type calcium current described previously in other tissues. This component activated at low voltages (around -50 mV from a holding potential of -70 mV) and inactivated with a time constant 10-30 ms at -20 mV; the inactivation was strongly voltage dependent. Substitution of Ca2+ with Ba2+ reduced this current in most cases or had no effect in some instances. Surprisingly, the transient calcium current was potentiated by Bay-K 8644 and inhibited by nifedipine in some of the ganglion cells tested. 3. A sustained component, which activated at between -20 and -10 mV from a holding potential of -70 mV, was found in all ganglion cells from which we recorded. This component was substantially larger when equimolar Ba2+ replaced Ca2+ as the charge carrier, and was sensitive to the dihydropyridine agonist Bay-K 8644 and the antagonist nifedipine. Thus the sustained current in turtle retinal ganglion cells was similar to the L-type calcium current described in chick DRG neurons. However, unlike the typical L-type current, this component in turtle ganglion cells showed an inactivation that was highly dependent on the intracellular free Ca2+ concentration but not the membrane potential. 4. Synthetic omega-conotoxin MVIIC selectively blocked the sustained calcium current while sparing the transient component. It could completely block the sustained current that was resistant to nifedipine in some cells. Thus there may exist several different high voltage-activated calcium channels in turtle retinal ganglion cells.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3