Different voltage dependence of transient and persistent Na+ currents is compatible with modal-gating hypothesis for sodium channels

Author:

Brown A. M.1,Schwindt P. C.1,Crill W. E.1

Affiliation:

1. Department of Physiology and Biophysics, University of Washington School of Medicine, Seattle 98195.

Abstract

1. These experiments tested the hypothesis that the differing voltage dependence of the transient (INa) and persistent (INaP) Na+ currents in neocortical neurons results from the state of inactivation of one type of Na+ channel rather than from the existence of different types of Na+ channels. This question was examined in acutely isolated pyramidal neurons from the sensorimotor cortex of rats by using papain to remove inactivation from INa and comparing the resulting activation curve with that of INaP. 2. In control cells, INaP activated at more negative potentials than INa. Inclusion of papain in the recording pipette removed inactivation from INa and caused the INa activation curve to be shifted leftward to the position of the curve for INaP measured in control cells. Papain greatly increased both INa amplitude and the time to reach peak INa during smaller depolarizations, whereas the difference between control and test currents was reduced during large depolarizations. 3. We conclude that differences in the voltage dependence of INa and INaP activation does not provide sufficient evidence that these currents flow through separate sets of Na+ channels. Instead, our results are consistent with the idea that INaP largely arises from a fraction of the transient Na+ channels that intermittently lose their inactivation.

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3