Coordinate transformations in the control of cat posture

Author:

Lacquaniti F.1,Maioli C.1

Affiliation:

1. Istituto di Neuroscienze e Bioimmagini, Consiglio Nazionale delle Ricerche, Milan.

Abstract

1. Global geometric variables represent high-order parameters in the control of cat posture. In particular, limb length and orientation are accurately controlled in response to tilts of the support platform. There is now electrophysiological evidence, obtained in anesthetized cats, that spinal sensory neurons projecting to the cerebellum are broadly tuned to limb length and orientation. Limb length and orientation specify the position of the limb end-points in body-centered polar coordinates. They define an intended posture in a global manner, leaving the detailed geometric configuration of the limbs undetermined. The planar covariation of limb joint angles described in the accompanying paper suggests the existence of an intermediate processing stage that transforms endpoint coordinates into the angular coordinates of the joints (inverse mapping). In this paper we address the question of the nature of this coordinate transformation. Because the number of degrees of freedom of angular motion in each limb exceeds that of endpoint motion in world space, several different angular configurations are compatible with any given endpoint position in world space. Thus the problem of coordinate transformation is a priori indeterminate. We have tested a number of different hypotheses. 2. Coordinate transformation could be accomplished implicitly by means of discrete kinematic synergies. Any given geometric configuration of the limb would result from a weighed combination of only two distinct patterns of angular covariations, the first pattern affecting selectively limb length and the second pattern affecting limb orientation. This decomposition, however, was found in only a few sporadic cases. 3. We also tested the possibility that the coordinate transformation involves the Moore-Penrose generalized inverse. We found that this algorithm produces a planar covariation of the joint angles, but with an orientation orthogonal to the experimental plane. By contrast, a linear transformation with constant, position-independent terms can fit the experimental plane of angular covariations but predicts large errors in endpoint position. 4. The particular orientation in joint space of the experimental plane, coupled with the scatter of data points around the plane, bears a specific implication for the problem of inverse mapping. The experimental plane crosses the constant position lines (the loci of all possible changes of the joint angles that correspond with an invariant position of the endpoint) at an acute angle. Consequently the specification of limb orientation is little sensitive to joint configurations: relatively small changes in orientation can be produced by large changes in joint configurations.(ABSTRACT TRUNCATED AT 400 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3