Defense reaction in the pond snail Planorbis corneus. III. Response to input from statocysts

Author:

Arshavsky Y. I.1,Deliagina T. G.1,Okshtein I. L.1,Orlovsky G. N.1,Panchin Y. V.1,Popova L. B.1

Affiliation:

1. Institute of Problems of Information Transmission, Academy of Sciencesof Russia, Moscow.

Abstract

1. In the intact pond snail Planorbis corneus, a rapid tilt in any plane evoked a defense reaction consisting of a fast movement of the shell towards the head, shortening of the foot, inhibition of locomotion and of rhythmical feeding movements. This reaction was similar to the first phase of the general defense reaction of Planorbis to cutaneous stimulation. 2. A method has been developed for inclination of the isolated CNS in space (up to 90 degrees) and simultaneous intracellular recordings from different neurons. 3. The statocyst receptor cells (SRCs) responded both phasically and tonically to the tilt. The SRCs differ in their spatial zones of sensitivity. 4. Essential manifestations of the defense reaction to the input from statocysts could be observed in the in vitro preparation of the CNS isolated with statocysts. Both tilting of the CNS and electrical stimulation of individual SRCs elicited an excitatory response in numerous neurons from different ganglia, including motor neurons (MNs) of the columellar muscle. This response was of "all-or-none" nature, and could be evoked by electrical stimulation of any SRC. The response was followed by a long (10-20 s) period of refractoriness. 5. Activation of SRCs resulted also in excitation of the giant dopaminergic cell in the left pedal ganglion (related to the control of respiration), in inhibition of the feeding rhythm generator, and in inhibition of the pedal neurons responsible for activation of the ciliary locomotor system. 6. Combined stimulation of two inputs able to evoke a defense reaction, i.e., those from the statocyst and from cutaneous nerve, revealed a strong interdependence of their central effects.(ABSTRACT TRUNCATED AT 250 WORDS)

Publisher

American Physiological Society

Subject

Physiology,General Neuroscience

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3